Horner Schema - Polynome 3. Grades 1

Eine Möglichkeit zur Berechnung der Nullstellen einer Funktion f(x) wäre die Polynomdivision. Aber auch das sogenannte Horner-Schema kann hierbei helfen, die Nullstellen zu berechnen.

Man ermittelt die Nullstelle x_1 durch Berechnung.

Beispiel: $f(x) = \frac{1}{2}x^3 + \frac{6}{6}x^2 + \frac{8}{8}x$ Nullstelle: $x_1 = 0$

- a) Übertrage die Koeffizienten in die Tabelle.
- b) Ermittle die erste Nullstelle.
- c) Trage die Nullstelle in die Tabelle ein.
- d) Übertrage den 1. Koeffizienten in die letzte Zeile.
- e) Multipliziere den $\frac{1}{1}$ mit $\frac{0}{1}$ und schreibe das Ergebnis unter $\frac{6}{1}$.
- f) Bilde die Summe aus 6 und 0 und schreibe sie darunter.
- g) Verfahre ebenso mit den beiden nächsten Spalten.
- h) Steht am Ende O, ist die Nullstelle gefunden.

Nullstelle:	x^3	X ²	X	Absoluter Term
	1	6	8	0
0		0	0 .	0
	1	6	8	0√

Ganzteil-Polynom: $g(x) = 1x^2 + 6x + 8$ Nullstelle: $x_2 = -2$

Gehe genauso vor. (oder p,q-Formel)

	X ²	Х	Absoluter Term	
	1	6	8	
-2		-2	-8	
	1	4	0	

Ganzteil-Polynom: x + 4 Nullstelle: $x_2 = -4$

 $L = \{-4; -2; 0\}$

Aufgaben: Bestimme die Nullstellen mit Hilfe des Horner Schemas.

 $f(x) = x^3 + 7x^2 - 20x - 96$ und f(x) = 0

 $g(x) = x^3 + 5x^2 - 33x + 27$ und g(x) = 0

 $h(x) = x^3 + 13x^2 + 47x + 35$ und h(x) = 0

 $i(x) = x^3 - 10x^2 + 3x + 54$ und i(x) = 0

Horner Schema - Polynome 3. Grades 1

Lösungen

$$f(x) = x^3 + 7x^2 - 20x - 96$$
 und $f(x) = 0$

Probe mit $x_1 = 4$ f(4) = 64 + 112 - 80 - 96 = 0

Horner Schema:

	1	7	-20	-96
4		4	44	96
	1	11	24	0
-3		-3	-24	
	1	8	0	

Ganzteil-Polynom: $x^2 + 11x + 24$

Ganzteil-Polynom: x + 8

$$L = \{-8; -3; 4\}$$

$$g(x) = x^3 + 5x^2 - 33x + 27$$
 und $g(x) = 0$

Probe mit $x_1 = 1$ f(1) = 1 + 5 - 33 + 27 = 0

Horner Schema:

	1	5	-33	27
1		1	6	-27
	1	6	-27	0
3		3	27	
	1	9	0	

Ganzteil-Polynom: $x^2 + 6x - 27$

Ganzteil-Polynom: x + 9

$$L = \{-9; 3; 1\}$$

$$h(x) = x^3 + 13x^2 + 47x + 35$$
 und $h(x) = 0$ $L = \{-7; -5; -1\}$

Probe mit $x_1 = -1$ f(-1) = -1 + 13 - 47 + 35 = 0

Horner Schema:

	1	13	47	35
-1		-1	-12	-35
	1	12	35	0
-5		-5	-35	
	1	7	0	

Ganzteil-Polynom:
$$x^2 + 12x + 35$$

Ganzteil-Polynom: x + 7

$$L = \{-7; -5; -1\}$$

$$i(x) = x^3 - 10x^2 + 3x + 54$$
 und $i(x) = 0$

Probe mit $x_1 = 3$ f(3) = 27 - 90 + 9 + 54 = 0

Horner Schema:

	1	-10	3	54
3		3	-21	-54
	1	-7	-18	0
-2		-2	18	
	1	-9	0	

Ganzteil-Polynom:
$$x^2 - 7x - 18$$

Ganzteil-Polynom: x - 9

$$L = \{-2; 3; 9\}$$